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ABSTRACT

Recent advances in high-throughput sequencing
(HTS) technologies and computing capacity have
produced unprecedented amounts of genomic
data that have unraveled the genetics of phenotypic
variability in several species. However, operating
and integrating current software tools for data
analysis still require important investments in
highly skilled personnel. Developing accurate, effi-
cient and user-friendly software packages for HTS
data analysis will lead to a more rapid discovery of
genomic elements relevant to medical, agricultural
and industrial applications. We therefore developed
Next-Generation Sequencing Eclipse Plug-in
(NGSEP), a new software tool for integrated, effi-
cient and user-friendly detection of single nucleo-
tide variants (SNVs), indels and copy number
variants (CNVs). NGSEP includes modules for read
alignment, sorting, merging, functional annotation
of variants, filtering and quality statistics. Analysis
of sequencing experiments in yeast, rice and human
samples shows that NGSEP has superior accuracy
and efficiency, compared with currently available
packages for variants detection. We also show
that only a comprehensive and accurate identifica-
tion of repeat regions and CNVs allows researchers
to properly separate SNVs from differences between
copies of repeat elements. We expect that NGSEP
will become a strong support tool to empower the

analysis of sequencing data in a wide range of
research projects on different species.

INTRODUCTION

Recent advances in high-throughput sequencing (HTS)
technologies have allowed research groups to produce un-
precedented amounts of genomics data that have been of
great use in exploring the genetic variability among and
within any kind of species and in determining the genetic
causes of phenotypic variation. These technologies have
been successfully applied to make significant discoveries in
highly dissimilar research fields such as human genetics
(1), cancer research (2), crop breeding (3) and even the
industrial production of biofuels (4). One of the major
bottlenecks in projects involving HTS is the bioinfor-
matics capacity (in hardware, software and personnel)
needed to analyze the large amounts of data produced
by the technology and to deliver valuable information
such as genes related to traits or diseases or markers for
genomic selection. Because significant advances have been
made in increasing computing capacity, the main reason
for this bottleneck is that software packages for analysis of
HTS data are still under development and any project
involving HTS data requires close collaboration with
trained bioinformaticians. The development of fast, accur-
ate and easy-to-use software packages and analysis pipe-
lines will empower scientists to perform by themselves the
data analysis required to discover the genes, DNA elem-
ents or genomic variants related to their particular
research interests.
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In this work, we focus on the analysis pipeline required
to discover genomic differences between a sequenced
sample and a reference genome that is a representative
DNA sequence assumed to be genetically close to the
sample. In this case, samples are sequenced at moderate
coverage (10x to 40x depending on genome length and
heterozygosity) and then a generic bioinformatics pipeline
aligns the reads to the reference sequence to find the most
likely origin of each read in the genome. These alignments
are then used to produce a catalog of genomic differences
between the sample and the reference sequence (see an
example schematic in Supplementary Figure S1). Several
algorithms and software tools have been recently de-
veloped to resolve the different steps of this pipeline [see
(5) and (6) for recent reviews]. Unfortunately, most of
these tools require some sort of bioinformatics support
to be operated and integrated, which is further complicated
by the complexity of dealing with differences in
programming languages, maintenance, efficiency, formats
for data exchange, usability and even code quality.
Commercial packages such as CLC Bioinformatics or
Lasergene provide an alternative for solving this
problem but at the expense of costly software licensing
and limited capacity to perform nonstandard analysis.

Here, we describe Next-Generation Sequencing Eclipse
Plug-in (NGSEP), a new integrated user-friendly frame-
work for standard analysis of HTS reads. The main func-
tionality of NGSEP is the variants detector, which allows
researchers to make integrated discovery of single nucleo-
tide variants (SNVs), small and large indels and regions
with copy number variation (CNVs). NGSEP also
provides a user interface for Bowtie 2 (7) to perform
mapping to the reference genome and other utilities such
as alignments sorting, merging of variants from different
samples and functional annotation of variants. Using real
sequencing data from yeast, rice and human samples we
show that the algorithms implemented in NGSEP provide
the same or better accuracy and efficiency than the
recently published algorithms GATK (8,9), SAMtools
(10), SNVer (11), VarScan 2 (12,13), CNVnator (14) and
BreakDancer (15). We also compared the results of SNV
and CNYV detection for different read alignment strategies
implemented in the packages BWA (16) and Bowtie 2 (7).
NGSEP is distributed as an open-source java package
available at https://sourceforge.net/projects/ngsep/.

MATERIALS AND METHODS
Data sets

We downloaded high-coverage sequencing reads for the
CEU individual NA12878 from the pilot project of
the 1000 Genomes Consortium currently available at
ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/pilot_data/data/.
Low-coverage data were also downloaded from the first re-
lease of the 1000 genomes project (ftp://ftp.1000genomes.
ebi.ac.uk/voll/ftp/data/). Yeast samples were sequenced
by the group of Johan Thevelein as part of an effort to
find genes sustaining low glycerol production [see (4) for
details].
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Rice seeds of IR8 (accession BCF 941) were planted in
the greenhouse facility at CIAT (International Center for
Tropical Agriculture). Genomic DNA was prepared from
a single plant as follows: 1 g of leaf tissue of a 45-DAP
seedling was collected and ground with liquid nitrogen.
DNA was isolated according to the urea-phenol extraction
protocol modified from (17). DNA quality was tested
before whole-genome sequencing so that the concentra-
tion exceeded 500 ng/uL and the A260/280 ratio was 1.8.
DNA was sequenced on the Illumina HiSeq 2000 by the
Yale Center for Genome Analysis (http://medicine.yale.
edu/keck/ycga/index.aspx).

Description of algorithms implemented in NGSEP

We built NGSEP based on the previously published
software NGSTools (18). We redesigned parts of the
initial package to improve its performance and we also
fixed a few errors found by original users of NGSTools.
As discussed in the ‘Results’ section, we included one par-
ameter to control the maximum number of reads starting
at each reference site and another parameter to control the
maximum value of a base quality score. To perform re-
alignment around indels, each time NGSEP detects a site
with the start of an indel call it screens a few base pairs
ahead (five for insertions, the length of the deletion plus
two for deletions) to check whether the same indel is
present in other reads at a different start site. If that
is the case, the start site with the highest read support is
chosen as the most likely start site and NGSEP changes
the CIGAR field of alignments with indels starting at a
site different from the chosen start.

We implemented the CNVnator algorithm as described
in (14). This algorithm performs a statistical segmentation
of the read depth (RD) pattern to identify regions with
significant deviation from the average RD in single-copy
regions. In the general literature, these types of algorithms
are called read depth (RD) algorithms to contrast them
with algorithms based on read pair (RP) data (19). Our
implementation of CNVnator has four main differences
compared with the algorithm as described in the article:

(1) We created a parameter for the genome size.

(2) We took only bins with unique alignments for the
calculation of mean and variance of RD.

(3) While merging small neutral regions between CNVs
we check that the final region has a P-value below
the minimum threshold.

(4) Additional deletions calculated with the Gaussian
method cannot override deletions called by the
standard method.

RD approaches for CNV discovery rely on the assump-
tion that the coverage is evenly distributed across the
DNA present in the sample and hence regions with sig-
nificant changes in the average RD become candidates for
dosage altering variation. It has been observed that this
assumption can be violated in at least two different ways
(20). First, regions with extreme values of GC-content
tend to be sequenced at lower coverages, which creates
a need for an initial step of GC-correction of the
read intensities. For NGSEP, we implemented the same
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strategy for GC-content correction implemented in
CNVnator. Second, different treatments of reads with
multiple alignments in the reference genome produce dif-
ferent biases in the estimation of the number of copies for
each region (21). In most of the previous studies the initial
data set contains only the best alignment for each read.
For reads with two or more equally good alignments, one
alignment is chosen at random (14). To account for RD
biases, a ‘mappability score’ can be defined for each site of
the genome taking for example the average mapping
quality of the alignments spanning such site. Then,
normalization can be performed by clustering sites with
similar score and correcting the read intensities
by applying the same procedure used to correct for
GC-content biases (20).

Normalizing RD by mappability seeks to equalize the
RD distribution on repetitive and unique regions.
However, a repetitive region can be thought to be a
region with a copy number different from the one of a
unique region in the genome. Instead of trying to normal-
ize the RD for such regions, we tried to use the RD to
identify them. We believe that this could be particularly
useful for draft genomes in which annotation of repetitive
elements is still in progress. To accomplish this, we
calculated the distribution of RD taking only the sites of
the genome without ambiguously aligned reads (e.g. sites
with good mappability scores). This allowed us to use
Bowtie 2 to build different read alignment data sets for
the yeast samples and then test the following strategies for
the management of reads with multiple alignments:
(1) pick the best alignment for each read (default and
similar to BWA), (ii) keep up to three alignments per
read and (iii) output all alignments found for each read.
In the third approach, all regions with variable copy
number, including known repeat elements are supposed
to stand out from neutral regions. We tried the second
option as an intermediate stage suitable for the analysis
of samples with large genomes.

Because it has been shown that RD and RP approaches
are complementary for detecting large deletions (22),
we also implemented an RP algorithm for detecting
large indels. As described in previous works (15,23,24),
NGSEP walks over the reads sorted by genomic location
and clusters unique overlapping alignments of RPs for
which the predicted insert length is similar among them
and deviates significantly from the average. While clusters
with insert length larger than the average are used as
evidence for detecting large deletions, clusters with insert
length smaller than the average become evidence for large
insertions. The length of each indel event is estimated as
the average insert length of the alignments in the cluster
supporting the event minus the average length of the
whole data set. To calculate the significance of a cluster
as a predictor of a large indel, we use the Poisson model
described in the algorithm BreakDancerMax (15). This
approach can also be used to detect other types of vari-
ation such as inversions, translocations and tandem dupli-
cations (25,26).

The source code of NGSEP implementing the algo-
rithms described above is available as an open-source
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package under a GPL license (at https://sourceforge.net/
projects/ngsep/).

Construction of gold-standard genotypes for a yeast pool
of segregants

Deep sequencing of two haploid yeast parents at an
average coverage close to 80x allowed us to build a
gold-standard data set of expected genotypes for a pool
of 20 F; haploid segregants randomly selected from
an initial pool of 257 segregants produced by independent
crosses of the two parents (4) (Supplementary
Figure S2A). We extracted from each haploid parent the
sites of the genome in which only one allele is observed
using both BWA and Bowtie 2 alignments and in which
this allele is called by NGSEP, GATK, SAMtools and
VarScan with quality (GQ field or QUAL column if GQ
is not present) >90. For the haploid parent CBS6412, this
procedure yielded 9321 880 high-quality genotype calls to
the reference allele and 53455 high-quality genotype calls
to the alternative allele. For the haploid parent ER7A, the
numbers of high-quality genotype calls were 9894901 to
the reference allele and 53050 to the alternative allele.
Then, we assumed that the 8 301 038 sites with the refer-
ence allele in both parents and the 38279 sites with the
alternative allele in both parents will look like homozy-
gous sites in the pool. Conversely, we assumed that the
16 904 sites in which the high-quality genotypes of the two
haploid parents differ become heterozygous sites in the
pool in which the two alleles should appear in nearly
equal proportions.

To test the degree to which genetic drift could invalidate
these assumptions, we performed 100000 simulation ex-
periments as follows: given a heterozygous site, we pick
the number of segregants with the reference allele n; from a
binomial distribution with parameters n = 20 and p = 0.5.
Then, we pick the total RD d; from a Poisson distribution
centered in the median coverage. Finally, we pick the
number of times the reference allele is observed from a
binomial distribution with parameters »n =n; and
p = n;/20. The distribution of the reference allele fre-
quency obtained in this simulation is consistent with the
observed distribution based on allele counts at the
sites predicted to be heterozygous (Supplementary
Figure S2B). We also performed two additional simula-
tions, one increasing the number of segregants in the pool
to 200, and a second one assuming a reference allele fre-
quency of 0.5 (e.g. removing the effect of genetic drift).
Although we could observe that genetic drift effectively
increases the variance in the proportion of the reference
allele, the observed distribution of allele frequencies
based on read counts and the fact that we did not
observe fixation of one allele at any of the sites predicted
as being heterozygous suggests that an accurate method to
perform standard genotyping of a diploid individual
should also be accurate for identifying homozygous and
heterozygous sites in the pool. VCF files with the gold-
standard genotypes for the yeast unselected pool are
available at https://sourceforge.net/projects/ngsep/files/
benchmark/.
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Measures for quality assessment of genotype calls

Given a set of genotype calls and gold-standard genotypes
for one sample we counted the number of genotypes that
were consistent and the number that were inconsistent
between the genotype calls and the gold standard (sites
not included in the gold-standard are not used in any of
the following calculations). Genotyping errors can be clas-
sified into the following types: (i) homozygous sites called
heterozygous, (ii) heterozygous sites called homozygous,
(i) homozygous reference sites called homozygous
variant and (iv) homozygous variant sites called homozy-
gous reference. Because we observed in the validation with
yeast samples that errors of type 3 and type 4 were almost
negligible, and for all methods they disappear at a
minimum quality score of 20, we focused the validation
on errors of type 1 and 2. Let G,,G, be the sets of homo-
zygous and heterozygous sites in the gold standard and
C,,C, be the sets of sites with homozygous and heterozy-
gous calls in the test data set. In this notation, the number
of type 1 errors is |G, N C,| and the number of type 2
errors is |G, N C,|. The following formulas summarize
the calculations of sensitivity (S), false discovery rate
(FDR) and false positive rate that we used to compare
methods at different minimum quality thresholds and to
build standard receiver operating characteristic (ROC)
curves (27) comparing sensitivity and specificity:

|G, N Col |G, N Cyl |G. NGl
S, =—2_"%.FDR,=—% 2. FPR,=—°% "%
|G| [Col |G|
|G, N Cl |Gy, N G |G, N Cel
S, : FDR, = : FPR, =
|Gl [C.| |Gyl

Comparison with other tools

We assembled the GATK pipeline (version 2.7.2) as
described on their best practices web page (http://www.
broadinstitute.org/gatk/guide/best-practices), which in-
cludes the MarkDuplicates tool of Picard, indel realign-
ment and quality score recalibration. Each command
was executed with default parameters, except for the
UnifiedGenotyper, for which we set the option
stand_emit_conf to zero to maximize the calls produced
by GATK and to be able to compare GATK genotypes
with genotypes from other tools at different quality
scores. For the yeast samples, we used the out mode
EMIT_ALL_SITES to genotype every site of the
genome. For the rice sample, we also set the prior hetero-
zygosity rate to 0.0001. We called SNVs and small indels
separately using the appropriate genotype likelihood
model for each case. Because BAM files obtained from
the 1000 Genomes Project were the result of the prepro-
cessing pipeline of GATK (ftp://ftp.1000genomes.ebi.ac.
uk/voll/ftp/), we only ran the UnifiedGenotyper on
those samples.

We ran SAMtools version 0.1.19 as suggested in the
documentation for the mpileup command (http://
samtools.sourceforge.net/mpileup.shtml). For the yeast
samples we ran bcftools with the option -cg to retain
every site covered in the genome. For VarScan (version
2.3.6) we ran the mpileup2cns tool as suggested in their
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documentation for germ line variants (http://varscan.
sourceforge.net/germline-calling.html) to obtain genome-
wide genotyping for the yeast samples. We compared the
variants before and after applying the perl script for filter-
ing described in the VarScan 2 paper (13). To facilitate
independent replication of the results shown in this manu-
script, we provide template scripts to run the different
components of NGSEP, GATK, SAMtools and
VarScan in a command line environment as supplemen-
tary material (Supplementary Scripts S1-S10).

We ran SNVer from its graphical interface using default
parameters. Because SNVer did not provide a GQ field
reporting the quality of genotype calls, we calculated the
negative of the 10-based logarithm of the P-value as the
quality score of their genotype calls. We ran CNVnator as
suggested in the README included in the publicly avail-
able distribution (http://sv.gersteinlab.org/cnvnator/)
using a window size of 100 bp. Finally, for BreakDancer
we set the minimum mapping quality (q option) to 10. We
performed all these experiments on a Dell computer with a
quadruple Intel Xeon CPU at 2.93 GHz, 26.5 GB of avail-
able memory and 598.9 GB of total disk space.

RESULTS
Integrated variants discovery with NGSEP

We developed the software package called NGSEP that
integrates algorithms for discovery of SNVs, small and
large indels and genomic regions with copy number vari-
ation (CNVs). We improved our recently published algo-
rithm SNVQ for SNV detection (18), and we also
expanded the model to allow discovery of small indels.
For CNV discovery we built a new implementation of
the algorithm CNVnator (14), one of the most accurate
algorithms for detecting CNVs (6). Finally, we integrated
a RP algorithm to detect large deletions and mid-size in-
sertions as described in (15). To facilitate user interaction,
we built a graphical interface based on the Eclipse infra-
structure. Figure 1 shows a common user interaction to
call variants with NGSEP. We implemented several
features to enable users to run complete analysis of their
samples and obtain VCF files with genotype calls starting
from raw reads (Supplementary Table S1). VCF files
produced by NGSEP can be exported into the input
formats required by commonly used bioinformatics
packages such as Mega for the construction of phylogen-
etic trees (28), Structure for the analysis of population
structure (29) or Tassel to perform genome-wide associ-
ation studies (30). We also implemented options to align
reads and call variants in parallel for efficient processing
of relatively large numbers of samples. We tested each of
these components under a wide range of hardware and
operating system environments (Windows, Linux and
Mac) to ensure that NGSEP has as much portability as
that offered by any Java software package.

We performed a comprehensive validation of the algo-
rithms implemented in NGSEP, compared with other
state-of-the-art tools for discovery and genotyping of
SNVs, small and large indels and CNVs (Table 1). We
reanalyzed a recently published data set of two haploid
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the find variants button.

yeast parents and one pool of F| segregants, which we
used as a simulated diploid child to test the accuracy of
both homozygous and heterozygous genotype calls (4).
We also reanalyzed benchmark data sets for the human
individual NA12878, who belongs to the population of
Utah residents with ancestry from Northern and
Western Europe (CEU). We analyzed two samples at
different coverage levels released by the 1000 Genomes
Consortium. Finally, we performed whole-genome
resequencing of rice cultivar IR8, the semi-dwarf variety
that significantly increased rice yield in Asia and played an
important role in the rice green revolution (31,32).
SAMtools was the most efficient tool in both time and
memory. The GATK pipeline is the most expensive in
resource consumption, specifically during polymerase
chain reaction (PCR) duplicate identification and quality
score recalibration. These two steps take more than three
times the time and memory used by the genotyper itself.
Because the group of the 1000 Genomes Project already
performed duplicate identification and quality score
recalibration for the human samples, we ran only the
genotyper, obtaining runtimes and memory consumptions
similar to those obtained with SAMtools. VarScan 2 was
the second most expensive in resource consumption,
mainly owing to the perl script for filtering introduced
in (13). Because executing this filtering also requires
>100 GB of temporary disk space even for the rice
sample, we tried only VarScan 2 in the yeast samples.
NGSEP uses more time and memory than SAMtools
and SNVer owing to the extra steps needed to perform
local realignment around indels and to call CNVs and

large indels. However, in comparison with the
sum of runtimes and maximum memory of CNVnator,
SAMtools and BreakDancer, NGSEP showed compar-
able efficiency for the yeast samples and better overall ef-
ficiency for the rice and human samples.

SNV detection accuracy

We built a gold-standard set of genotypes for the un-
selected pool of yeast segregants and we calculated the
sensitivity and FDR for each tool under different quality
filters (see ‘Materials and Methods’ section for details).
Figure 2A shows that NGSEP achieved the best sensitivity
at the minimum quality threshold below 60 for calling
both heterozygous and homozygous SNVs, compared
with GATK, and SAMtools. The three methods
reported sensitivity >96% even at the minimum quality
threshold of 40. The most visible difference among
methods is the rapid loss of sensitivity for homozygous
SNVs predicted using GATK. For heterozygous geno-
types, NGSEP reported between 1 and 6% more sensitiv-
ity than GATK and between 0.5 and 2% more sensitivity
than SAMtools. The FDR of NGSEP, GATK and
SAMtools was always <1% for both homozygous and het-
erozygous calls (Figure 2B). NGSEP achieved the lowest
FDR for homozygous calls at the expense of reporting a
larger FDR for heterozygous calls compared with
SAMtools. SNVer and VarScan 2 had an inferior perform-
ance, especially for heterozygous sites (Supplementary
Figure S3). For VarScan, we compared the results before
and after applying the filtering step proposed in (13).
SAMtools achieved the lowest FDR for heterozygous
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Table 1. Data sets used for testing and comparison of NGSEP with other algorithms for SNV and CNV detection and genotyping
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® The GATK pipeline was executed as suggested in (9) for the yeast and rice samples. For the human samples only the Unified Genotyper was executed.

& RT: runtime; RAM: random access memory.
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Figure 2. Sensitivity (left panels) and FDR (right panels) for
genotyping of SNVs wusing NGSEP (blue), GATK (red) and
SAMtools (yellow) as a function of the minimum quality score on
the following benchmark data sets: (A and B) yeast unselected pool,
(C and D) high-coverage human sample NA12878 and (E and F) low-
coverage human sample NA12878. Continuous lines represent homo-
zygous genotype calls, and broken lines represent heterozygous
genotype calls.

calls at the expense of reduced sensitivity and higher FDR
for homozygous calls. A standard ROC analysis contrast-
ing sensitivity and specificity rates SAMtools as the best
package for the discovery of heterozygous genotypes and
NGSEP as the best for homozygous genotypes in this data
set (Supplementary Figure S4A and B).

We investigated the effect of some of the factors known
to affect the SNV genotyping quality. One well-known
source of erroneous genotype calls is the confounding
effect of PCR amplification artifacts. This problem is
tackled in the GATK pipeline with the MarkDup tool
of Picard (http://picard.sourceforge.net/index.shtml).
However, we found that this tool does not handle well
reads with multiple alignments. In NGSEP, we decided
to account for amplification artifacts within the algorithm
by setting a maximum on the number of reads allowed
to start at the same genomic location. We observed a re-
duction in FDR for heterozygous calls as this parameter
becomes smaller at the expense of reduced sensitivity and
increased FDR for homozygous calls (Supplementary
Figure S5). Another source of genotyping errors usually
comes from sequencing errors with high base quality
scores. The GATK pipeline includes a module to recali-
brate these erroneous quality scores. However, this
module consumes more than twice the computing time
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and memory as the genotyper itself. In NGSEP, we
alleviated the problem of miscallibrated quality scores by
setting up a parameter to specify the maximum allowed
value of a base quality score. Larger scores are equalized
to this threshold. Again, we observed a reduction in FDR
for heterozygous calls at the expense of sensitivity as we
reduced the value of this parameter (Supplementary
Figure S6). For maximum values <20, the loss of sensitiv-
ity became more important than the reduction in FDR.
Finally, we analyzed the effect of changing the tool used to
map reads back to the reference. We mapped the reads to
both BWA and Bowtie 2 and we ran NGSEP separately
on each set of alignments. Results with both tools were
almost equal in sensitivity. In the default mode, Bowtie 2
achieved lower FDR for homozygous calls than BWA
at the expense of a higher FDR for heterozygous calls
(Supplementary Figure S7). We also compared the
behavior of Bowtie 2 when it was asked to retain up to
three alignments per read (k parameter equals 3) because,
as shown below, this parameter has a large influence on
the detection of CNVs. We implemented an option in
NGSEP to consider secondary alignments for SNV detec-
tion and we observed that when this option was activated
a modest increase in sensitivity was observed, at the
expense of an increase of ~0.5% in the FDR for hetero-
zygous calls. We finally verified that default NGSEP par-
ameters produced nearly the same results for alignments
obtained with Bowtie 2 in the default mode and in the
K = 3 mode.

For the human data sets, we defined as a gold standard
the set of calls available in the Hapmap database for the
individual NA12878 (33). Figure 2C shows that, in this
case, GATK was slightly better than NGSEP in sensitivity
for heterozygous sites at a minimum quality score above
30. However, for homozygous sites, the same loss of sen-
sitivity observed in the yeast sample was observed in this
sample. The FDRs (Figure 2D) were generally higher than
the ones observed in the yeast sample but they remained
low. SAMtools was again the best method to control FDR
in heterozygous calls at the expense of sensitivity, followed
in this case by GATK (Figure 2D). Comparison based on
ROC curves shows that SAMtools still has better com-
promise between sensitivity and specificity than NGSEP
and GATK for heterozygous sites (Supplementary
Figure S4C). For homozygous sites, NGSEP still
shows the best compromise but the difference with
SAMtools and GATK became minimal (Supplementary
Figure S4D). However, it is worth noting that the com-
promise between sensitivity and specificity obtained by
NGSEP and SAMtools at minimum quality 40 (ticker
datapoints) can be obtained only with GATK at
minimum quality below 20.

We also compared the results of the different algorithms
in the newer low-coverage data set for NA12878. Because
the coverage for this data set is only 5x, it became more
difficult for all algorithms to predict the right genotype,
especially at heterozygous sites (Figure 2E). Again,
GATK had the best sensitivity for heterozygous sites but
the worst for homozygous variant sites. The FDR
remained low for heterozygous calls but it increased for
homozygous variant calls mainly because a large number
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Figure 3. (A) Sensitivity and (B) FDR for genotyping of small indels
produced by NGSEP (blue), GATK (red) and SAMtools (yellow) using
reads aligned with BWA, and NGSEP (green) using reads aligned with
Bowtie 2 on the yeast unselected pool as a function of the minimum
quality score. Continuous lines represent homozygous genotype calls,
and broken lines represent heterozygous genotype calls.

of heterozygous sites were incorrectly called as homozy-
gous variants (Figure 2F). Comparison based on ROC
curves suggests a small advantage of GATK for heterozy-
gous sites (Supplementary Figure S4E). For homozygous
sites all methods show similar compromise between sensi-
tivity and specificity (Supplementary Figure S4F).
However, in this case the lower coverage forces both
SAMtools and GATK to reduce their minimum quality
threshold below 20 to obtain the same compromise
obtained by NGSEP at minimum quality 40. Finally, it
is worth noting that, for minimum quality scores 40 and
50, even at a small coverage of 5x, the three methods
achieved FDRs <3% for both homozygous and heterozy-
gous genotype calls.

Detection accuracy for small indels

To validate the accuracy of small indel detection, we
defined a gold-standard data set for the unselected
sample using the same approach we used to validate
SNV detection accuracy. In general, the percentage of
agreement between NGSEP and GATK was only
~80%, which is much lower than the percentage
obtained for SNVs (99%). SAMtools was the most sensi-
tive for homozygous indels at the expense of having the
worst sensitivity for heterozygous indels and the largest
FDR for homozygous genotype calls (Figure 3 and
Supplementary Figure SS8). GATK was the best algo-
rithm for genotyping of heterozygous indels, and the
drop in sensitivity observed in the validation of homozy-
gous SNVs was less pronounced in this case. Although
NGSEP seemed to have the largest error rate for hetero-
zygous indels, it is worth mentioning that for quality
scores >40, the absolute difference between NGSEP and
GATK in type 1 errors was just 8 and this difference dis-
appears for a minimum quality score of 60. We also
compared the accuracy of NGSEP using BWA and
Bowtie 2 alignments and we found that Bowtie 2 is able
to identify more homozygous indels at the expense of
increased FDR for heterozygous calls.

CNYV detection accuracy

We tested our implementation of the CNVnator algorithm
on the different data sets to make sure that both imple-
mentations provide similar results. In general, the
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percentage of agreement for the yeast samples was >90%
and rose to 98% for the human samples, mainly because
the original implementation of CNVnator has parameters
such as the size of the genome fixed for processing of
human samples. Conversely, in NGSEP, the genome size
is determined from the reference file or can even be set up
as a parameter. The other important difference between
the two implementations is that, to calculate averages and
standard deviations for both GC-correction and determin-
ation of the average RD, we consider only bins without
reads with multiple alignments. This allows us to process
samples in which multiple alignments are recorded. We
verified that, given the same read intensities, the same
genome size and the same predicted average and
standard deviation on the RD, our implementation
produces the same partition and almost the same CNV
calls (Figures 4A and B).

To compare the effects of different read alignment
strategies on CNV detection, we performed three inde-
pendent runs of Bowtie 2 for each of the yeast data sets
keeping (i) the best alignment for each read (default), (ii)
up to three alignments per read (-k option equal to 3) and
(1i1) all possible alignments for each read (-a option) (sce
‘Materials and Methods’ section for details). We
compared the CNV calls reported in the haploid parents
CBS6412 and ER7A with a database of 700 known repeat
elements available in the Saccharomyces cerevisiae
database (http://www.yeastgenome.org/download-data/
curation). As expected, using the third approach, 33 and
47% of the repeats were identified by NGSEP on the align-
ments for CBS6412 and ER7A, respectively. Conversely,
the first approach reported only between 0.5 and 2% of
the repeats. Interestingly, between 40 and 48% of the re-
petitive regions were called deletions using the first
approach. Using the intermediate approach NGSEP
called between 5 and 10% of the repetitive regions as du-
plications and between 14 and 22% as deletions. As an
example to explain this behavior, Figure 4C shows how
read intensities differ for a long terminal repeat (LTR)
located on chromosome I. While the third approach was
able to retain all reads that belong to any of the copies of
this element present in the genome, the other two
approaches retained only a small percentage, which in
this case was much smaller than the average RD for
unique regions. This resulting pattern should produce a
false positive deletion call for this region using any CNV
detection algorithm based on RD.

The same confounding effect of repetitive regions could
be observed in the human samples. From the gold-
standard data set of 642 deletions and 271 duplications
developed by Mills and coworkers (22), only 32 duplica-
tions and 59 deletions do not overlap annotated repetitive
elements. Because in most of the previous studies only
the best alignment is kept for each read, most of the
validated duplications are classified as ‘not accessible by
RD algorithms’ (14,34). Figure 4D shows an example of a
validated duplication that becomes accessible in the low-
coverage data set after mapping reads with Bowtie 2 and
keeping three alignments for each read. Although this
region is not masked as a repeat in the current reference
genome, it is annotated as a nuclear mitochondrial
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sequence (NUMT region) (35). We found two almost
perfect copies of this region on chromosomes 11 and on
the mitochondrial chromosome, respectively.

Figure 4E and F show the percentage of validated de-
letions and duplications for the human sample NA12878
identified by NGSEP, CNVnator and BreakDancer in the
low-coverage data set. For NGSEP, we compared the
detection power of the RD and the RP algorithms, and
we also included the results obtained combining both
approaches. As expected, results with the RD ap-
proach implemented in NGSEP were similar to the
results obtained using the original implementation of
CNVnator. Keeping three alignments per read reduced
the percentage of detected deletions but increased
by >30% the percentage of detected duplications.
Combining the RD and RP approaches increased by
>10% the percentage of detected deletions compared
with the results using only the RD approach. The com-
bination of RD and RP algorithms of NGSEP showed a
slightly better sensitivity than the combination of the
results produced by CNVnator and BreakDancer.

Because the identification of repetitive regions is
important for both SNV and CNV detection, we imple-
mented an option in the variants detector to identify
repetitive regions in the genome based on reads with
multiple alignments. This module traverses the read align-
ments sorted by genomic location and clusters overlapping
multiple alignments into candidate repetitive regions.
Genomic regions in which <20% of the alignments
are unique are called repetitive. We were able to detect
>90% of the 512272 base pairs annotated as repetitive
in the yeast genome. Even using the low-coverage data
set for NAI12878 we recovered 16% of the 1.7 Gb
annotated as repetitive elements in the human genome.
NGSEP integrates predicted repeat elements, CNVs and
large indels obtained by each of the algorithms described
above into a single GFF file. This GFF file can be directly
uploaded to a genome browser for detailed visualization
of structural variants in any genomic region of interest.

Resequencing of the green revolution rice cultivar IR8

We performed whole-genome resequencing of rice cultivar
IR8, the semi-dwarf indica variety developed by the
International Rice Research Institute that played an im-
portant role during the green revolution. We mapped
reads to the current reference genome (36) using Bowtie
2 with the option k = 3 to keep up to three alignments per
read and then we performed discovery of genomic variants
with NGSEP. Looking at the sequencing error rate pre-
dicted by the quality statistics produced with NGSEP
(Supplementary Figure S9), we chose to ignore the last
four base pairs of each read to detect of SNVs and small
indels. We also set the prior heterozygosity rate to 0.0001
to take into account that IR8 went through several gen-
erations of inbreeding. Finally, we set the maximum base
quality score to 30, the maximum number of alignments
with the same start to 2 and the minimum genotype
quality to 40. NGSEP detected 59322 repeat regions,
13427 duplications, 18362 large deletions and 5120 large
insertions spanning 125.4, 148.07, 39.53 and 1.54 Mb,
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Figure 4. Quality assessment of the implementation of the CNVNator algorithm in NGSEP. Given the same GC-corrected intensities, the same
genome size and the same RD distribution parameters, both implementations produce nearly the same (A) partition and (B) RD levels. Examples of
repetitive regions in (C) the yeast parent ER7A and (D) the low-coverage human sample show how RD varies depending on the number of
alignments counted for each read (blue: only the best alignment of each read counted; red: up to three alignments counted; yellow: all alignments
found with Bowtie 2 with the -a option counted). Sensitivity of NGSEP, CNVnator and BreakDancer to identify (E) deletions and (F) duplications
validated by Mills and collaborators (22) using reads from the low-coverage data set for NA12878. Default and K = 3 modes of Bowtie 2 are

compared.

respectively. In all, 63.76% of the predicted duplications
and 43.89% of the predicted deletions were located in sites
identified as repetitive. The total genomic length of regions
identified as repetitive or with abnormal copy number was

200.68 Mb. To check the consistency of our findings with
previous work, we calculated the regions masked as repeti-
tive in the version of the reference genome available in
phytozome (www.phytozome.net) (37). From 128.44 Mb
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masked as repetitive in this version of the reference,
NGSEP identified 105.84 Mb (82.4%) as repeats or
regions with abnormal copy number.

NGSEP found 4266 169 SNVs and 315 834 small indels,
from which 1657880 (38.86%) and 58 494 (18.52%) were
heterozygous. At first glance, this result seemed to be in-
consistent with the expected loss of heterozygosity
produced by the successive generations of inbreeding per-
formed to develop IR8. However, we could verify that a
large percentage of these heterozygous calls really repre-
sented differences between copies of repetitive elements.
The percentage of heterozygous calls decreases to
10.35% if we filter out variants falling into repetitive
regions and CNVs identified by NGSEP (Supplementary
Table S2). Filtering SNVs in the currently available
masked regions reduced the same percentage to only
20.21%. A similar behavior was observed in the percent-
age of heterozygous indels and in the percentage of het-
erozygous variants in coding regions. Moreover, we
observed a reduction in the percentage of nonsense
SNVs and frameshift indels. A possible reason for this
phenomenon is that selective pressure does not need to
be as strong in genes with multiple copies as it is for
single-copy genes because a damaging mutation in one
copy of a paralog gene does not produce complete loss
of function. In fact, nonsynonymous mutations between
paralog copies of genes could confer beneficial neofunctio-
nalization (38).

For comparison, we also ran the GATK pipeline and
SAMtools, both based on BWA alignments. NGSEP
reported 1023023 SNVs after the most stringent filtering
of repetitive regions, compared with 500313 SNVs
reported by GATK and 754728 SNVs reported by
SAMtools using the same filters. NGSEP also reported
>2-fold and 1.25-fold more indels and variants in coding
regions than GATK and SAMtools, respectively
(Supplementary Table S2). Unfortunately, in this case,
we do not have gold-standard genotype calls to make a
comprehensive assessment of the sensitivity and specificity
achieved by the different algorithms. As indirect measures
of quality, we calculated the percentage of nonsynonym-
ous SN'Vs, the percentage of nonsense SNVs and the per-
centage of frameshift indels. The three methods reported
similar values for these measures, which allows us to
speculate that the three methods have similar overall spe-
cificity. SAMtools reported consistently lower percentages
of heterozygous variants, which, as observed in the experi-
ments on yeast and human samples, is likely to be due to
better specificity for heterozygous calls. We also built a
Venn diagram to assess the agreement among the three
methods (Figure 5). More than half of the variants
reported by NGSEP and not reported by GATK were
reported by SAMtools, which provides increased confi-
dence in the genotype calls reported by NGSEP. To
assess whether GATK and SAMtools call a homozygous
reference genotype or left uncalled the variants called only
by NGSEP, we compared genotype calls reported by
GATK and SAMtools at lower qualities and we found
that both tools were able to call up to 92% of the
variants reported by NGSEP if their minimum quality
was lowered to zero (Supplementary Figure S10).
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Figure 5. Venn diagrams comparing the variants discovered by
NGSEP (blue), GATK (red) and SAMtools (yellow) on the data set
of reads obtained after sequencing rice cultivar IR8. The upper diagram
compares homozygous nonreference calls among the three methods.
Smaller circles within each category represent sites that were called
heterozygous by at least one method and homozygous nonreference
by at least another method (for example, 2116 variants called homozy-
gous nonreference by GATK and SAMtools were called heterozygous
by NGSEP). The smaller diagram at the bottom compares heterozy-
gous calls that were not called homozygous nonreference by any of the
three methods.

Finally, we queried the 273393 SNVs only identified by
NGSEP in a data set of 60 sequenced rice varieties and
we found that, from 208923 SNVs for which at least 30
samples were genotyped, 183256 (87.71%) have minor
allele frequencies >0.05 and only 14180 (6.79%) are
unique for IR8 (manuscript in preparation).

The genetic cause for the reduced height of IRS8 is a
deletion of 382bp spanning exons 1 and 2 of the SD/
gene (32). We verified that the RP algorithm implemented
in NGSEP was able to detect this deletion. We uploaded
the GFF produced by NGSEP to the genome browser
available on the rice genome project Web site (http://
rice.plantbiology.msu.edu) and we could observe that
the deletion predicted by NGSEP covers the validated
deletion with almost perfect base-pair resolution
(Supplementary Figure S11).

DISCUSSION

Despite the exponential reduction in sequencing cost
produced by the technological advances achieved in the
past 10 years, analysis of HTS data remains a complex
process that requires large investments in computational
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capacity and personnel to translate sequencing data into
valuable information such as genes related to traits or
markers for selection. NGSEP is the product of an
effort to contribute with the evolution of software tools
to facilitate the analysis of HTS data. NGSEP provides an
intuitive framework in which scientists can analyze their
sequenced samples and obtain comprehensive data sets of
genomic variants. We used data sets of different species
and different natures to show that NGSEP has high
accuracy, efficiency and applicability. The use of
standard file formats for both receiving input data and
producing variant calls enables an easy integration with
different visualization and analysis tools.

We built on the experience obtained in our previous
work to tackle common issues affecting detection and
genotyping of SNVs, such as ambiguously called reads,
miscalibrated quality scores, PCR amplification artifacts
and misalignment around small indels. Because we
followed different strategies to solve these problems
compared with those adopted in the GATK pipeline, we
demonstrated that our solutions are more efficient in the
consumption of computational resources and in general
report improved sensitivity for similar specificity.

To comprehensively assess the different algorithms
for detecting and genotyping SNVs and small indels, we
constructed a gold-standard data set of genotype calls for
an F; pool of yeast segregants covering >60% of the
yeast genome. In contrast with previous studies in which
only general measures such as transition/transversion
ratio or degree of sharing among algorithms were used
as indirect indicators of quality (5,11), this gold-
standard allowed us to make precise estimations of sensi-
tivity and specificity for the most widely used software
tools under different quality filters. Our comparisons
indicate that NGSEP, SAMtools and GATK are the
most competitive alternatives. However, the results pre-
sented here are only a snapshot of the current state,
which is likely to change with the evolution of current
alternatives and the development of new algorithms. In
this context, the availability of a genome-wide gold-
standard data set is a valuable resource for performing
continuous comparisons of current and novel algorithms
and for promoting the future development of accurate
genotyping methods.

As recent studies have pointed out, accurate discovery of
CNVs from HTS data is an extremely challenging task and
the current performance of the available algorithms is far
from satisfactory. For NGSEP, we decided to reimplement
the recently developed algorithm CNVnator, which is
based on a robust statistical analysis of the RD signal.
Because for this kind of approach the management of
reads with multiple alignments plays a critical role, we
compared different alignment strategies implemented in
BWA and Bowtie 2 mapping tools. In general, we found
that keeping multiple alignments increases sensitivity to
identify duplications. Because proper identification of re-
petitive elements is critical to make a good interpretation
of both SNVs and CNVs detected by any bioinformatics
pipeline, we also included a module in the variants detector
to explicitly find repetitive regions in the genome based on
the information provided by the reads with multiple
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alignments. Finally, we combined CNVnator with a RP
algorithm and we verified that combining these two
approaches increases sensitivity for detecting large dele-
tions. Sequencing of rice cultivar IR8 shows that NGSEP
provides a more accurate separation between heterozygous
variants and differences between copies of repetitive
elements compared with other commonly used pipelines.
The RP algorithm implemented in NGSEP was also able
to identify the large deletion in the SDI gene, which
shows that NGSEP can be helpful in identifying variants
conferring important phenotypic effects.

We believe that the main advantage of NGSEP is the
out-of-the-box integration of accurate algorithms to
discover, genotype, combine, annotate and filter genomic
variants, which facilitates the analysis and understanding
of the final results. Although it could be argued that this is
already offered by web portal solutions such as Galaxy
(39), in practice the initial set up, integration of pipelines
and maintenance of local Galaxy installations still require
a significant amount of technical support. NGSEP offers
an alternative in which scientists can discover, genotype
and perform downstream analysis of genomic variants on
their local computers, requiring only as much support as
that needed by a standard desktop application. Moreover,
the level of integration among algorithms achieved by
NGSEP allows researchers to summarize diversity, copy
number and functional information into a single VCF file.
Given the heterogeneity in programming languages,
quality and input and output formats observed in
current bioinformatic solutions, achieving the same inte-
gration with a combination of existing tools still requires
significant programming and scripting efforts. However,
NGSEP is not meant to replace cluster solutions, which
are more suitable for large projects involving analysis over
hundreds or even thousands of samples. For these kinds of
projects, we offer the main functionalities of NGSEP
through a command line interface that allows paralleliza-
tion in a cluster environment. The main functions are also
described in XML scripts, allowing groups with local
galaxy installations already in place to use NGSEP,
combine it with other tools, and benefit from the flexibility
offered by web portals such as Galaxy.

In our local experience, we have successfully used
NGSEP to process 60 whole-genome sequencing sam-
ples of rice and close to 200 restriction site associated
DNA (RAD) sequencing samples of cassava using our
local computational cluster. We have also been able to
analyze a cassava GBS population of 77 samples within
2 days through the graphical interface in a normal desktop
(unpublished data). We believe that NGSEP will become a
great alternative for a broad range of scientists to analyze
HTS data in their current and future projects.

ACCESSION NUMBERS

Sequencing reads for the yeast samples analyzed in this
work are available on the NCBI short read archive
database (http://www.ncbi.nlm.nih.gov/sra) with acces-
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cultivar IR8 are also available at SRA with accession
number SRR869317.
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